Introduction

- *Mycobacterium* is a genus of genetically similar bacteria including various human & animal pathogens: *M. tuberculosis*; the cause of tuberculosis (TB) in humans, *M. bovis*; the cause of TB in cattle; and others such as *M. avium*; causing opportunistic infections in immunocompromised people.
- In 2014 alone, there were 9.6 million *M. tuberculosis* infections worldwide, leading to over 1.5 million deaths, the biggest cause of death by infectious disease worldwide.
- *M. bovis* has been estimated to have cost the British government an estimated £500 million for the past decade due to diagnostics, surveillance and culling of infected cattle. With this figure set to rise to over £1 billion in the next decade if improvements are not made in vaccine discovery/diagnostics.
- Extensive research has been conducted on Mycobacterium to discover new drug targets & vaccine candidates, but many have fallen short in their promise as new and effective drugs or vaccines.
- One particular area that promises is targeting cytochrome P450s (CYPs), enzymes involved in core metabolic pathways in some bacteria such as the Actinomycetales group.
- *M. tuberculosis* and *M. bovis* differ in their number of CYPs, with 20 & 17 respectively, whereas other bacteria have none, such as *E. coli* and others such as *Streptomyces avermitilis* have 33 CYPs.
- Anti-fungal drugs such as azoles have been identified to inhibit Mycobacterial CYPs but their use as effective anti-tuberculosis drugs have yet to be utilised.
- CYPs have been identified as potential targets, but their regulation in *Mycobacterium* is widely unknown, with 8 CYP genes within close proximity to TetR family of transcriptional regulators (TFTRs) genes, a group of transcriptional regulators in high abundance in *Mycobacterium* genomes, but the function of all TFTRs in *M. tuberculosis* is unknown.
- A range of bioinformatic and molecular techniques is discussed in this poster and how they will be used to further understand the role of TFTRs in CYP regulation.

Identifying TFTRs by bioinformatics:

- **M. tuberculosis** TFTRs (TFTR-1, TFTR-2, & TFTR-3) have been identified using bioinformatic analyses and their close proximity & likely regulation of CYP genes (Figure 2).
- CYP-associated TFTRs have homologues in *M. bovis*, except Rv1255c in *M. bovis* where a region of difference is present (Figure 2C).
- Predicted binding motifs of the three chosen CYP-associated TFTRs (Rv0135c, Rv0775 & Rv1255c) identified (Figure 3).
- All three TFTRs were successfully cloned into pNC28-Bsa4 vector using ligation independent cloning (Figure 4). With sequencing results showing 100% sequence identity & coverage compared to *M. tuberculosis* TFTR gene sequences.
- Expression of three CYP-associated TFTRs confirmed in Rosetta 2 (DE3) pLysS or in BL21 (DE3) pLYS3 (Figure 5). Likely that addition of numerous rare codons in Rosetta 2 strain helps with expression.
- Currently, expression of CYP-associated TFTRs is being pursued and optimised for efficient expression of Rv0775, with purification being conducted.

Conclusions

- **TFTRs** are in high abundance in the *M. tuberculosis* genome, with 11 within close proximity to CYP genes (Figure 1).
- Three TFTRs (Rv0135c, Rv0775 & Rv1255c) chosen based on bioinformatic analyses and their close proximity & likely regulation of CYP genes (Figure 2).
- CYP-associated TFTRs have homologues in *M. bovis*, except Rv1255c in *M. bovis* where a region of difference is present (Figure 2C).
- Predicted binding motifs of the three chosen CYP-associated TFTRs (Rv0135c, Rv0775 & Rv1255c) identified (Figure 3).
- All three TFTRs were successfully cloned into pNC28-Bsa4 vector using ligation independent cloning (Figure 4). With sequencing results showing 100% sequence identity & coverage compared to *M. tuberculosis* TFTR gene sequences.
- Expression of three CYP-associated TFTRs confirmed in Rosetta 2 (DE3) pLysS or in BL21 (DE3) pLYS3 (Figure 5). Likely that addition of numerous rare codons in Rosetta 2 strain helps with expression.
- Currently, expression of CYP-associated TFTRs is being pursued and optimised for efficient expression of Rv0775, with purification being conducted.

Methods

- **Verification of binding motifs** by performing electrophoretic mobility shift assays (EMSA).
- **Confirmation of expression** by Western Blot using anti-his tag antibody.
- **Generation of TFTR deletion mutants in Mycobacterium species** e.g. *M. tuberculosis* and *M. bovis*. Other deletion work will potentially include deletion of named CYPs associated with TFTRs.
- **From deletion mutants:** study expression pattern changes using GFP/RFP reporter gene constructs and RNA-Seq/Microarrays.
- **Phenotypic analyses in deletion mutants including drug sensitivity,** as recent publications have shown that Rv1256c can be inhibited by anti-fungal Azole drugs, drugs already approved for use.
- From this work, it is hoped CYPs & TFTR regulators of *M. tuberculosis* will be further understood and facilitate in the discovery of future drug targets and to further understand mycobacterial metabolism.

References