Investigating transcriptional regulators in *Mycobacterium tuberculosis*

Ashley Otter
@asherichia

Department of Pathology and Pathogen Biology (PPB)
Supervisors: Dr. Sharon Kendall and Dr. Liam Good
Mycobacteria

- Member of Actinomycetales – diverse group
- *Mycobacterium* – split into two main groups
 - Fast Growing Mycobacteria (FG) and Slow Growing Mycobacteria (SG)

Notable members of FG:
- **M. smegmatis**
 - Non-virulent and often used as a ‘surrogate’ for TB due to faster growth
- **M. abscessus**
 - Often associated with immunocompromised patients and highly drug resistant

Notable members of SG (and MTBC):
- **M. bovis**
 - Primarily affects cattle but can infect humans, basis of BCG – limited protection
- **M. tuberculosis**
 - Causative agent of human tuberculosis
Tuberculosis

M. tuberculosis
- Leading cause of death by an infectious disease
- One death every 15 seconds, with ⅓ of world infected
- 2014 infections data (United Nations, 2015)
 - 9.6 million, ~500,000 multidrug resistant (increasing) = 1.5 million deaths
- Long treatment regimes

M. bovis
- Primary cause of tuberculosis in cattle
- Basis of BCG vaccine for TB
- Problematic in UK – in 2014, 9.4 million cattle tested and ~35,000 culled (APHA)
- Economic burden of *M. bovis*
 - Last decade: £500 million, next decade: +£1 billion
Mycobacteria

- *M. tuberculosis* and *M. bovis* grow extremely slow: ~24 hour doubling time (compared to *E. coli* – 20 minutes…)

- Different cell wall structure – Arabinogalactan/Mycolic acids

![Diagram of Mycobacterium, Gram negative (E. coli), Gram positive (Bacillus)]
Tuberculosis

- Primarily affects the lungs – Cavities and granuloma formation

- Hence – coughing, spluttering and presence of a bloody mucus
M. tuberculosis genome

- Sequenced 1998 - 4.4 million base pairs

- High GC content
 - M. tuberculosis – 65.6%
 - E. coli – 50%

- Strains exist and are usually localised
 - Beijing – Asia
 - Haarlem – Europe/S America/Caribbean

- Various transcriptional regulators
 - TetR
 - Sigma factors
Why TetR transcriptional regulators?
Transcriptional regulators

- Control the regulation of various genes encoding cytochromes, transporters etc.
- 52 TetR transcriptional regulators in *M. tuberculosis*
Transcriptional regulators

- Control the regulation of various genes encoding cytochromes, transporters etc.

- 52 TetR transcriptional regulators in *M. tuberculosis*
TetR regulators in *M. tuberculosis*

- Some are well studied:
 - *kstR*
 - Cholesterol utilisation (Kendall *et al.* 2007)
 - *kstR2*
 - Cholesterol utilisation (Kendall *et al.* 2010)
 - *bkaR*
 - Branched chain amino acid metabolism (Balhana *et al.* 2013)
 - *ethR*
 - Involved in ethionamide resistance (Baulard *et al.* 2000)
 - *inbR*
 - Isoniazid sensitivity (Yang *et al.* 2015)

- So what do the remaining do?
 = My PhD!
TetR genes

TetR locations within various *Mycobacterium* genomes
Basis of my PhD

Bioinformatics
- MEME, FIMO, BRIG

Expression of rTetR
- Expression in *E. coli*

DNA binding
Relatively easy
- EMSA, gel shifts, columns

Ligand binding
Difficult
- Identifying ligands that bind TetR

Function and regulation
- Mutagenesis and over/underexpression
 - RNA Seq/Microarray analysis
Bioinformatics

- **MEME**
 - Predicts DNA binding motif from multiple sets of genomic data
 - DNA in → Motif out

- **FIMO**
 - Takes motif from MEME and searches genome
 - Predicted binding sites
 - Helps with identifying regulatory genes

```
GCACGTAAGGCACGAGAGTTGGTGCGGCCTAA
GAGCGCCACCACGACATCGGTTGATTGCCCGGGCAA
GCTGGCCGATTGCCGTTCCACCGGATCCCGGCAA
GTCCGAACGTATGTCTGAAAGGTGACTCGGCC
```
Recombinant TetR and mutant

- Recombinant expression of TetR enables:
 - Determining DNA binding sites
 - Confirm bioinformatics predictions
 - Ligand binding
 - What ligand binds TetR?

- Functional studies in TetR mutant
 - Effect on susceptibility?
 - Increase/decrease growth rate?
 - Normal cell division?
 - Resistant to antibiotics?
So why?

“If you don’t go fishing, you won’t catch any fish”
Julian Parkhill

- Previous TetR transcriptional regulators control vital systems
 - Cholesterol utilisation – fundamental to growth - drug target?
 - Sridhar et al. (2016) recently described various TetR as drug targets

- Further understanding of *Mycobacterium*
- Aid in future studies and potential drug targets
 - For both *M. tuberculosis* and *M. bovis*